Friday, 30 December 2016


Machine Learning - Basics and classification

  • Machine Learning is giving ability to machines to learn/program on it own.
  • Machine learning is not restricted to Artificial Intelligence. It is having many applications in various filed, Recommendations System raging from data mining, rating system to automation of house hold activities.
  • Machine is said to be 'learning', if its performance improves with experience. 


Classification of Machine Learning (ML):
  1. Supervised ML.
  2. Unsupervised ML.
1. Supervised ML
  • Known Sample data sets are given. (Test Passed / Failed )
  • Regression : Continuous value .
  • Classification : Discrete value
2. Unsupervised ML
  • Data set don't have any label (like Passed /Failed)  
  • Just data set is given and algorithm will divide it in cluster.
  • As we are not specifying what data belong to what segment/ cluster its unsupervised learning.
  • We have to derive structure from unknown data.

No comments:

Post a Comment